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Abstract 

The positions of reflections on the diffraction pattem 
from a polycrystalline fiber are described by a cylindrical 
projection of the reciprocal lattice. The characteristics of 
the projection depend on the crystal system and the 
orientation of the fiber axis relative to the unit-cell axes. 
Expressions describing the cylindrically projected reci- 
procal lattice for a general triclinic system and any 
orientation of the fiber axis are derived. Calculations 
using these expressions illustrate characteristics of the 
projected reciprocal lattice and aid in the interpretation of 
fiber diffraction patterns. 

1. Introduction 

X-ray fiber diffraction analysis is used to determine the 
molecular and crystal structures of polymers and rod-like 
macromolecular assemblies that can be prepared as 
oriented fibers or as rotationally disordered planar arrays 
(Amott, 1980; Millane, 1988). The degree of order in 
these specimens varies. In a noncrystalline fiber, the 
diffracting particles are oriented with their long axes 
approximately parallel but are randomly positioned and 
randomly rotated about these axes and the diffraction 
pattern contains continuous intensity distributed on layer 
lines that is equal to the cylindrical average of the 
intensity diffracted from a single particle. In a poly-~ 
crystalline fiber, the molecules-form small well ordered 
crystallites that are randomly positioned and randomly 
rotated about a preferred axis. The diffraction pattern 
consists of discrete Bragg reflections and is equivalent to 
the cylindrical projection of the diffraction pattem from a 
single crystal. Diffraction data from polycrystalline fibers 
have been used to determine a wide range of poly- 
nucleotide, polysaccharide and synthetic polymer struc- 
tures (Amott, 1980; Millane, 1988). 

The positions of the reflections on a fiber diffraction 
pattern are described by the cylindrically projected 
reciprocal lattice (CPRL). The characteristics of the 
projection depend on the crystal system and the 
orientation of the rotation axis relative to the unit-cell 
axes. Because of the cylindrical projection, determination 
of the unit-cell dimensions from a fiber diffraction pattern 
is not necessarily straightforward or even unambiguous. 
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Many biopolymers in polycrystalline fibers crystallize in 
a monoclinic (or orthorhombic or hexagonal) system 
where the monoclinic angle is in a plane that is normal to 
the rotation axis. Although difficulties can arise because 
of reflection overlap in projection, interpretation of the 
diffraction pattern in terms of the cell constants is usually 
straightforward. However, if the cell is triclinic or the 
rotation axis is not coincident with one of the unit-cell 
axes, then interpretation of the projected reciprocal lattice 
may not be so easy. We derive here expressions 
describing the cylindrically projected reciprocal lattice 
for the general case of a triclinic system and any 
orientation of the rotation axis, and use them to illustrate 
characteristics of the projected reciprocal lattice. The 
results should be useful in the interpretation of fiber 
diffraction patterns. 

2. Preliminaries 

We define cylindrical polar coordinate systems (r, ~0, z) 
and (R, ~k, Z) in real and reciprocal space, respectively, 
with the z and Z axes parallel..The specimen consists of 
crystallites that are randomly positioned, and oriented 
such that the lines, denoted by £, that have a fixed 
orientation relative to the unit-cell axes in each crystallite 
are all parallel (Fig. l a). The crystallites are randomly 
rotated about £. The z axis is chosen to be parallel to £ so 
that the reciprocal lattice is cylindrically projected about 
the Z axis (the rotation or fiber axis). The crystallites 
diffract independently and, as a result of their random 
rotations, the measured intensity is the cylindrical 
average of the intensity diffracted by a representative 
crystallite. The intensity on a fiber diffraction pattem 
therefore consists of sharp reflections positioned on the 
CPRL, denoted by L(R, Z), given by 

27r 

£(R, Z) = f L(R, ~, Z) d~, ( 1 )  
0 

where L(R, ~, Z) denotes the reciprocal lattice expressed 
as a function of polar coordinates. The CPRL can 
therefore be written as 

L(R, Z) = ~ 8(R - R(h, k, 1), Z - Z(h, k, 1)), (2) 
h,k,l 
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where 3() is the Dirac delta function and R(h, k, l) and 
Z(h, k, l) are the cylindrical polar coordinates of  the 
reciprocal-lattice point (h, k,/). The CPRL is therefore 
described by the functions R(h, k, l) and Z(h, k, l), which 
depend, of  course, on the cell constants and the 
orientation of  the line £. The spherical polar radius of 
the reflection hkl, p(h, k, l), is given by 

p2(h, k, l) = h2a .2 + k2b .2 -+- 12c .2 + 2hka*b* cos V* 

+ 2hla*c* cos fl* + 2klb*c* cos ct* (3) 

and is related to R(h, k, l) and Z(h, k, l) by 

p2(h, k, l) = R2(h, k, l) + Z2(h, k, l). (4) 

In a polycrystalline fiber specimen, the crystallites are 
generally randomly oriented 'up and down'. If c is 
parallel to the fiber axis, then the crystallites are 
randomly rotated by 0 or 180 ° about an axis normal to 
c or the Z axis. If c is not parallel to the fiber axis, we 
assume (as is probable) that the crystallites are randomly 
rotated by 0 or 180 ° about an axis normal to the fiber 
axis. In either case, for every_ reciprocal-lattice point 
(h, k,/),  there is another (h, k, / )  for which R(h, k, l) -- 
R(h, k, l) and Z(h, k, I) = - Z ( h ,  k, l) so that the rotation 
has no effect on the cylindrical projection and one need 
consider only, say, positive values of Z. 

3. The cylindrically projected reciprocal lattice 

It is convenient to consider two cases separately; the first 
where the rotation axis £ is parallel to one of the unit-cell 
axes and the second where it is not. 

3.1. Rotation about a unit-cell axis 

The molecules in a fiber specimen are usually periodic 
and the molecular axes are parallel to one of  the unit-cell 
axes. Furthermore, the molecular axes usually define the 
axis of  rotation so that the rotation is normally about a 
unit-cell axis, which is taken here to be c, i.e. c is parallel 
to the z axis. This leads to simplifications because, since 
a* and b* are always perpendicular to c, the a'b* plane, 
or the hk net, is normal to the Z axis• Therefore, 
reflections for a fixed l lie on layer lines that are parallel 
to the R axis and are separated by AZ = 1/c, irrespective 
of the unit-cell angles, so that 

Z(h, k, 0 = l/c. (5) 

The most common crystal systems encountered in 
polycrystalline fibers are orthorhombic, hexagonal (with 
g = 120 °) or monoclinic (with g ¢ 90°). In these cases, 
since oe* =/3* = 90 °, c* is parallel to c and the Z axis, 
and the reciprocal lattice is cylindrically projected about 
c*. Reference to (3), (4) and (5) shows that 

R2(h, k,/)  = h2a .2 + k2b .2 + 2hka*b* cos V*. (6) 

Since R(h, k, l) is independent of  l, and therefore Z, 
reflections of  fixed h and k form straight row lines that 
are parallel to the Z axis. Since the row lines are parallel, 
interpretation of the CPRL is usually straightforward, 
difficulties arising only if  different row lines overlap in an 
ambiguous manner. 

If the crystal system is either triclinic or monoclinic 
with or* or/3* the monoclinic angle, then c* is not parallel 
to the Z axis and the cylindrical projection is not about c*. 
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Fig. 1. (a) Illustration of the fiber, or rotation, axis (£) relative to the unit 
cell. (b) Illustration of a hyperbolic row line (solid line) for an 
unfired triclinic system, shown in one quadrant of the cylindrically 
projected reciprocal space. The (0, O, D row line (solid line through 
the origin) and the asymptotes (dotted lines) for the row lines are also 
shown. The dashed line shows the focal axis. 
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Using (3), (4) and (5) shows that R(h,  k, I) is then given 
by 

R2(h, k, 1) = h2a .2 + k2b .2 + 12(c .2 - 1/c 2) 

+ 2hka*b* cos F* + 2hla*c* cos 13" 

+ 2klb*c* cos o~*. (7) 

Setting l = Zc allows (7) to be put in the form 

R2/A 2 -- (Z  - Zo)2/B 2 = 1, (8) 

where the constants A, B and Z o (derived in Appendix A) 
depend only on h, k and the cell constants. Equation (8) is 
the equation of  the row lines, parameterized by h and k, 
which are therefore hyperbolae with focus on the Z axis 
at Z = Z o and focal axis parallel to the R axis. This is 
illustrated in Fig. 1 (b), which shows one quadrant of  the 
projected reciprocal space. Substituting h = k = 0 in (7) 
shows that the equation of the (0, 0 , / )  row line is given 
by 

Z = ( c 2 c  . 2  - -  1)-I /2R.  (9) 

The (0, 0, / )  row line is therefore always a straight line 
through the origin of  reciprocal space (Fig: l b). Noting 
that the angle cr between e and e is given by 
cos tr = 1/(cc*), (9) may be written as 

Z -- cot trR. (10) 

The asymptotes for the hyperbolae are parallel to the ~ and 
(0, 0 , / )  row line, pass through the focus (Fig. 1 b) and are 
given by 

Z = c o t a R  + Z  o, (11) 

where (see Appendix A) 

Zo = [cc*(ha* cosfl* + kb* cosa*)]/(1 - c2c'2). (12) 

As a result of  the presence of up and down crystallites, 
each hyperbola is reflected in the R axis so that each row 
line consists of segments of  two hyperbolae with focal 
axes at Z = + Z  o and the two asymptotes given by (11) as 
shown in Fig. 1 (b). 

in Fig. 2. The collagen unit cell and its orientation 
relative to the fiber axis have been studied in detail by 
Fraser & MacRae (1981). 

In a tilted specimen, the Z axis is not normal to the 
a'b* plane so that (5) is not satisfied and Z(h,  k, l) 
depends in general on h, k and I. However, since the 
angle between e and the Z axis, which we refer to as the 
tilt and denote by r, is usually small (i.e. a few degrees), 
it is convenient to think of  the projected reciprocal-lattice 
points as being shifted by a small amount from the 
positions they would occupy if the crystallites were not 
tilted to the rotation axis. It is convenient to describe the 
tilt in reciprocal space. From Fig. 3(a), c is rotated by r 
relative to the Z axis, about the line m that passes through 
the origin of reciprocal space, lies in the plane normal to 
the Z axis and makes an angle 0 with a*. Since the tilt is 
the same in real and reciprocal spaces, the direction of 
the line £ (Fig. la)  is obtained by rotating e by - r  about 
m. Inspection of  Fig. 3(a) shows that, on the l = 0 
reciprocal-lattice plane, the distance Xo of a reciprocal- 
lattice point (h, k, 0) from the line m is 

x o = ha* sin 0 - kb* sin(F* - 0). (13) 

The reciprocal-space coordinates (~, r/) of  the projection 
of  the origin of the lth layer plane onto the zero layer are 
given by 

~5 -- lc*(cos oe* - cos  fl* cos  F * ) / s i n  2 F* (14) 

/7 = lc*(cos/5" -- cosct* cos Y*)/sin2 F*. (15) 

Therefore, the distance x of the projection Q' of a general 
reciprocal-lattice point Q(h,  k, l) onto the zero layer from 

3.2. Rotat ion axis incl ined to the unit-cell  axes 

Although in most fiber specimens the crystallites are 
aligned with one of  the unit-cell axes (generally 
correspond!ng to the molecular axis) parallel to the 
rotation axis, in some cases the rotation axis may be 
inclined at a (usually small) angle to the unit-cell axis. 
The fiber is then often referred to as being tilted, 
examples being some polyesters (Daubeny et al., 1954; 
Hall, 1984; Fu et al., 1994), collagen (Fraser & MacRae, 
1981; Fraser et al., 1983; Wess et al., 1995) and fd 
Inovirus  (Welsh et al., 1996). A good example of  a tilted 
polycrystalline fiber system is collagen, for which a 
typical diffraction pattern (courtesy of T. Wess) is shown 

m 

w 

Fig. 2. Fiber diffraction pattern from stained type I tendon collagen 
(Wess et al., 1995) showing fanning of the row lines. 
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the line m is 

x = (ha* + ~) sin 0 - (kb* + ~7) sin(F* - 0). (16) 

Reference to Fig. 3(b) shows that the distance of Q from 
the equatorial plane, Z(h ,  k,  l), is 

Z ( h , k , l ) = ( l c o s r / c ) - x s i n v ,  (17) 

so that 

Z(h, k, 0 = (1 cos r/c) + [(kb* + O) sin(×* - 0) 

-- (ha* + ~) sin 0] sin r. (18) 

Equation (18) gives the Z coordinates of the CPRL points 
and the radial coordinates, R(h ,  k,  l), are obtained by 
substituting (3) and (18) into (4). The resulting equations 
for the row lines are very complicated. The concept of a 
single layer line does not apply for a tilted system since, 
for a particular l, reflections hkl  lie on a variety of curves 
that depend on the values of h and k. One can think of 
'layer lines' for fixed h, say, and l, and variable k, 
however. To avoid confusion, we refer to these as 'pseudo 
layer lines'. For example, reflections for which h --- 1 and 
l - - 2  lie on the (1, k, 2) pseudo layer line. For small 
values of the tilt, the reciprocal-lattice points are rotated 
by a small angle, between - v  and r, about the origin of 
the fiber diffraction pattern, from their positions at zero 
tilt. Reflections that overlap for an untilted specimen 
separate into distinct reflections. This can aid in the 
indexing of reflections. 

The diffraction pattern from collagen (Fig. 2) clearly 
shows 'fanning' of the row lines, particularly about the 
meridian and on the first group of row lines from the 
meridian. The fanning is due to a combination of both a 
triclinic unit cell and tilting of the crystallites. The 
angular extent of the fanning is small since ot and /3 
deviate by less than 5 ° from 90 ° and the tilt is small 
(~2°). Fanning of the layer lines is not easily observed 
because of the large c repeat. 

For a triclinic system there is a particular tilt (i.e. 
specific values of r and 0) that puts the ab plane normal 
to the rotation axis. In this case, c* is parallel to the Z axis 
and the reciprocal lattice is rotated about e*. The (h, k) 
row lines are then straight lines parallel to the Z axis, as 
in the case of an untilted monoclinic system, but there are 
not single layer lines for a fixed l. The reflections that lie 
on hyperbolic row lines for the untilted triclinic system 
are rotated about the center of the pattern such that they 
move off the original layer lines but onto straight row 
lines. The particular values of r and 0 required can be 
calculated as follows. Since for an untilted system c is 
coincident with the z axis, for the above conditions to 
apply c* must be rotated onto the position originally 
occupied by c. The crystallites must therefore be rotated 
about the line m with direction c x c*, which makes an 
angle 0 to a* given by 

cosO= a*. (c x c*)/(a*lc x c'l). (19) 

The rotation r is the angle between c and c*, i.e. 

cos v = cos cr = 1/(cc*). (20) 

The required tilt can be calculated from the unit-cell 
constants using (19) and (20). This kind of tilt was 
considered by Welsh et al. (1996), who termed it 'type II 
tilt', in their analysis of the fiber diffraction patterns from 
fd Inov irus ,  although they concluded that this kind of tilt 
was not present. 
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Fig. 3. (a) The equatorial (untilted) plane and the (h, k, 0) plane in 
reciprocal space for a tilted fiber (refer to the text). (b) Projection 
along the rotation line m in reciprocal space showing projections of 
the zeroth and/th layer planes (refer to the text). 
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The crystallites in a real polycrystalline fiber are 
subject to disorientation, i.e. the lines £ for each 
crystallite are not exactly parallel but are distributed 
over a small angle relative to their average direction (the 
fiber axis). The effect of  disorientation is to smear each 
reciprocal-lattice point into an arc, centered on the origin 
of  the fiber diffraction pattern. Hence distinct reflections 
for tilted specimens will be observed only i f  the mean 
disorientation is less than the flit. However, as long as the 
disorientation is not too large, tilt is evidenced by 
splitting of the arcs. The maximum angular spread of a 

set of  reflections is equal to the stun of  the effects of  
disorientation and flit. If the disorientation is small or can 
be estimated, the tilt angle can be estimated by measuring 
the maximum angular spread of the reflections (Welsh et 
al., 1996). The orientation 0 of the tilt axis can be 
estimated by examining the distribution of the deviations 
of the positions of the reflections from their positions in 
an untilted fiber (Daubeny et al., 1954). The parameters r 
and 0 can be refined by least-squares fitting between the 
measured and calculated reflection positions (Fraser et 
al., 1983). 

0.4 A -1 

R ,- 0.4 A -1 

Fig. 4. Layer lines and (0, k) row lines for an untilted triclinic unit cell 
w i t h b = c = 2 0 A ,  o t = 7 0 ,  f l = 7 5 a n d y =  100 °. 
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Fig. 5. Relationship between the monoclinic unit cell for cellulose I/3 

(solid lines) and the triclinic unit cell for cellulose Iog (dashed lines). Fig. 6. (a) CPRL points for triclinic cellulose lot' (open circles) and 
The point P has fractional coordinates (!2,_,_½ ~ in the monoclinic monoclinic cellulose I/3 (filled circles). (b) Row lines and layer lines 
system, for triclinic cellulose Ic~'. 
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4. Examples 

We show here some examples of  the CPRL. These are 
presented either as projected reciprocal-lattice points or 
as plots of certain row lines and layer lines (or pseudo 
layer lines) in Figs. 4-8. The intersections between row 
lines and layer lines represent projected reciprocal-lattice 

"points. However, only intersections between row lines 
and pseudo layer lines that have common values of h and 
k represent projected reciprocal-lattice points. Note that 
because a fiat detector, for example, records a slightly 
distorted form of the projected reciprocal lattice, Figs. 
4-8 correspond approximately, but not exactly, to what 
would be seen on an actual recorded fiber diffraction 
pattern. 

For an untilted monoclinic unit cell (F ~ 90°), the row 
lines of constant h and k are straight lines parallel to the Z 

Table 1. Unit-cell dimensions for cellulose I 

a (/~) b (A) c (A) a (°) /3 (o) F (°) 

Cellulose I/3 8.00 8.17 10.36 90.00 90.00 97.30 
Cellulose Ia 5.93 6.74 10.36 113.00 117.00 81.00 
Cellulose Ia,' 5.94 6.60 10.36 113.10 115.85 81.11 

axis. For an untilted triclinic unit cell, e* is inclined to the 
Z axis and the row lines form hyperbolae as described in 
§3.1. This is illustrated in Fig. 4, which shows the layer 
lines and (0, k) row lines for a triclinic unit cell. 

Cellulose I forms crystalline fibers and often exists as a 
mixture of  two crystalline allomorphs, referred to as 
cellulose Ia and Ifl, which are triclinic and monoclinic 
(Table 1), respectively (Sugiyama et al., 1991). The two 
unit cells are closely related and we use them here to 
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Fig. 7. CPRL points for an orthorhombic unit cell (a = 6, b = 10, c = 
10 A) for untilted (filled circles) and tilted (r = 3 °) (open circles) 
systems with (a) 0 = 0 ° and (b) 0 = 20 °. (c) (0, k) row lines and 
(0, k , / )  and (1, k , / )  pseudo layer lines for a tilted (~: = 3 °, 0 = 0 °) 
orthorhombic unit cell with a = 5, b = 20 and c = 20 A. 
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illustrate the CPRL for untilted triclinic and monoclinic 
systems. The unit-cell vectors a', b' and c' for the triclinic 
cell are approximately related to those of  the monoclinic 
unit cell, a, b and e, by 

a' = - a / 2  + b / 2  - c / 4  

b ' =  - a / 2  - b / 2  - c /4  (21) 

C t = C 

(Fig. 5). For purposes o f  comparison of  the CPRL for the 
monoclinic and triclinic cells, we adjust the cell constants 
o f  the triclinic unit cell so that (21) is satisfied exactly and 
refer to the triclinic unit cell as cellulose Ict' (Table 1). 
The volume of  the triclinic unit cell is hal f  that o f  the 
monoclinic unit cell and the triclinic unit-cell vectors are 

related to those for the monoclinic unit cell by 

a'* = - a *  + b* 

b'* = - a *  - b *  (22)  

c'* = c* - a* /2 .  

Fig. 6(a) shows the CPRL for cellulose Iel and I/3 as open 
and filled circles, respectively. The reflections for the 
monoclinic unit cell are seen to lie on vertical row lines 
whereas those for the triclinic unit cell do not. Because of  
the relationships between the two unit cells, certain 
reciprocal-lattice points for the two cells coincide and 
therefore coincide on the CPRL. Using (22) shows that 
this occurs when the following conditions between the 
indices for the monoclinic (h, k , / )  and triclinic (h', k', l') 

Z 

R 0.4 A -1 

(a) 

0.4 A - l - - - - -  ~ 

R 0.4 A -1 

(c) 

04 " 

R 0.4 A -1 

(b) 

Fig. 8. (0, k) row lines and (0, k,/) and (+ 1, k,/) pseudo layer lines for 
a triclinic system (a = 5, b = 20, c = 20 A, a = 70, fl = 85, y = 
100 °) for (a) no tilt (r = 0°), (b) tilted (r = 3 °, 0 = 0°), and (c) tilted 
(~: = -21.9 °, 0 = -25.1 °) such that the ab plane is normal to the 
fiber axis. 
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cells are satisfied: 

h = - h '  - 1( - l ' / 2  

k = h ' - U  

l = l'. 

(23) 

These equations can only be satisfied on the even layer 
lines and give rise to some of the coincidences seen in 
Fig. 6(a). Other coincidences may also occur where 
reflections have the same (R, Z) coordinates as seen for 
some reflections on the odd layer lines in Fig. 6(a). All of 
the row lines and layer lines for the triclinic unit cell are 
shown in Fig. 6(b). The row lines are seen to fo rm a 
complex system of hyperbolae. 

The effects of e being tilted to the rotation axis for an 
orthorhombic system are shown in Fig. 7. The CPRL for 
rotation about a* (0 -- 0 °) and about a line inclined to a* 
(0 = 20 °) are shown in Figs. 7(a) and (b), respectively. 
Coincident reflections for an untilted fiber (filled circles) 
are rotated about the origin of the diffraction pattern, 
splitting into sets of  distinct reflections shown by the 
open circles for a tilted fiber. Some reflections remain 
coincident when the rotation axis coincides with the 
reciprocal-cell axis (Fig. 7a),  whereas they split when the 
rotation axis is inclined to the unit-cell axes (Fig. 7b). 
Some of the row lines and pseudo layer lines for a tilted 
orthorhombic system (0 = 0 °) are shown in Fig. 7(c). 
Each row line for an untilted system splits into two row 
lines (as a result of  reflection in the R axis), the (0, k) row 
lines being shown in Fig. 7(c). Each layer line splits into 
many pseudo layer lines, those for h = 0 and 1 being 
shown in Fig. 7(c). The intersections between row lines 
and pseudo layer lines that correspond to projected 
reciprocal-lattice points are shown by filled circles in Fig. 
7(c). 

The effect of tilting a triclmic system is shown in Fig. 
8. The (0, k) row lines and the (0, k , / )  and ( + l ,  k , / )  
pseudo layer lines for an untilted system are shown in 
Fig. 8(a). The same row lines and layer lines for a tilt of 
3 ° are shown in Fig. 8(b). The hyperbolic row lines 
change positions, and the overlapping pseudo layer lines 
split into three distinct curves. The effect of the 
crystallites being tilted such that the ab plane is normal 
to the fiber axis is shown in Fig. 8(c). The hyperbolic row 
lines for the untilted system (Fig. 8a) reduce to straight 
lines parallel to the Z axis (Fig. 8c). As a result of the 
larger tilt, the pseudo layer lines are now more spread out 
and overlap (Fig. 8c). 

5. Conclusions 

The positions of the reflections on a diffraction pattern 
from a polycrystalline fiber are described b y  the 
cylindrically projected reciprocal lattice. Although 
monoclinic (or orthorhombic or hexagonal) crystal 
systems are most common with polymers, triclinic 

systems are not uncommon. In most fibers, the molecular 
axes, or the crystallite c axes, are parallel to the fiber axis. 
The layer lines are then parallel to the R axis. For a 
monoclinic system, the row lines are parallel to the Z axis 
whereas, for" a triclinic system, the row lines form 
hyperbolae. In some cases, the c axes are tilted by a small 
angle torthe fiber axis, in which case the cylindrically 
p r o j e ~ r e c i p r o c a l  lattice is more complicated. There 
are no longer layer lines as for an untilted fiber, but the 
layer lines split into curves, one for each value of h (or k). 
Reflections in the pattern from a tilted fiber are rotated 
from the positions they would have in the diffraction 
pattem from an untilted fiber. This splitting can aid in 
structure determination (Daubeny et  al.,  1954). The 
precise structural basis for tilting has not been deter- 
mined in cases where it is observed (Daubeny et  al. ,  

1954; Fraser et  al.,  1983; Hall, 1984; Welsh et  al.,  1996). 
However, since it is usually very precise, it presumably 
results from preferred specific interactions between the 
molecules in different crystallites. There is a particular 
tilt (magnitude and direction) for a triclinic system that 
brings the ab plane normal to the fiber axis, in which case 
the diffraction pattem has straight row lines parallel to 
the Z axis. Expressions have been derived here that allow 
the cylindrically projected reciprocal lattice to be 
calculated for any tilted triclinic system. These allow 
one to explore the characteristics of  the projected 
reciprocal lattice, and aid in the interpretation of fiber 
diffraction patterns. 

APPENDIX A 
Equations of the row lines for untilted fibers 

Equation (7) with Z = lc for the row lines can be put in 
the form 

where 

and 

R 2 - -  D Z  2 + E Z  + F ,  (24) 

D = c 2 ¢  . 2  - -  1, (25) 

E = 2cc*(ha* cos/5* + kb* cosce*) (26) 

F = h2a .2 + k 2 b  .2 + 2hka*b* cos F*. (27) 

Equation (24) can be written in the form for a hyperbola 
(8) a s  

R 2 / A  2 - ( Z  - Z o ) 2 / B  2 = 1, (28) 

where 

A 2 = ( 4 D F  - E 2 ) / 4 D ,  

B 2 = ( 4 D F  --  Ez)/4D 2 

(29) 

(30) 
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and 

Z o -- - E / 2 D .  (31) 

Substituting from the above equations allows equation 
(12) for the Z coordinate of the focus (Zo) to be derived. 
The equation of the asymptotes is 

Z = (B/A)R + Z o = D-1/2R + Zo, (32) 

and substituting from the above gives equation (11) for 
the asymptotes. 
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